High Performance PLL Design in TSMC 5nm FinFET Process

Randy Caplan
Executive Vice President & Co-Founder, Silicon Creations
June 25, 2018
Outline

Silicon Creations introduction

Scaling PLLs to 5nm – what changes?

7nm Simulation – Silicon correlations

Summary
Silicon Creations Overview

• IP provider of PLLs, Oscillators and High-speed Interface
• Founded 2006 – self-funded, profitable and growing
• Design offices in Atlanta and Krakow, Poland
• High quality development, award winning support
• >160 customers (>60 in China)
• Mass production from 7nm to >180nm, 5nm coming soon
Awards for quality & support

• 2017
 – Audience choice paper, USA OIP
 – Mixed-Signal IP Partner of the year
• 2014
 – Best Emerging IP vendor
Fractional Ring PLL

- “One-Size-Fits-All” Synthesizer: flexibility reduces risk
 - Any crystal; <0.01ppm frequency step
- Programmable Power – Jitter Optimization
 - < 1mW
 - Long Term Jitter < 5ps RMS
- Production from 7nm, 5nm in development
- Derivative PLLs for
 - Core voltage only
 - Integer-only
 - Low area
 - Ultra-low jitter
 - Ultra-low power
Why our Fractional PLL?

Competitors

- Risky & expensive
 - Built new each time
 - Narrow input/output ranges
 ... need new masks to adjust
 - Buy a new IP for every clock

Silicon Creations

- Lower risk & lower cost
 - Predictable, measured
 - Wide range, programmable
 power-performance tradeoffs
 - One PLL, many applications – save $, ¥, €
 - Best support
Multi-Protocol SerDes PMA

- 0.25 – 16Gbps SerDes PMA (28LP, 40 LP, 12/16FFC soon)
- Low Power (mW/Gbps/lane): SR < 4.5mW, LR < 8.6mW
- Jitter cleaner Tx Ring PLL → Low Area

(10.3Gbps, 25dB channel loss)

5-tap DFE + CTLE + Eye monitor + Adaptive Eq. → >30 protocols

12.5Gbps Production silicon (70% FPGA activity, 4 lanes)

GJ = 0.31ps RMS, TJ = 13ps

R. Caplan – High Performance PLL Design in TS5FF
Silicon Creations introduction
Scaling PLLs to 5nm – what changes?
7nm Simulation – Silicon correlations
Summary
Analog scaling to 5nm

• Analog noise relates to kT/C, so area should scale with capacitance area
• It does! Analog scales, but less than digital
• From 180nm to 5nm:
 – Digital scaling is $\sim 800:1$
 – Analog scaling is $\sim 8:1$
5nm Process Complexity

- DRM size
 - From 180nm to FinFET, the # DRM pages increased 3.5x

- GDS layer count
 - Increased 7x

- Relative DRC Run Time
 - More complex rules, more fill geometries
 - Run times compared to 28nm:
 - 16nm FinFET are ~10x longer
 - 7nm FinFET are ~50x longer
 - 5nm FinFET are ~300x longer

![Graphs showing DRM size, GDS layers, and DRC Run Time](image)
Wire resistance challenge

- Interconnect resistance is climbing quickly!
- Extraction and post extract simulations are becoming more important
- From 40nm to 5nm/7nm, wire resistance (Ω/sq) has risen $\sim 6.5x$
- Designs are increasingly difficult to verify due to the need for simulation of distributed RC parasitics
5nm Simulation Time

- Schematic sims are out, distributed C-C and R-C extracted simulations are needed
- Translates to Higher development costs:
 - Longer development cycles
 - Need parallel simulation and more CPU’s
 - Need more EDA licenses
5nm Computing Solution

- Distributed computing farm
 - 2200+ CPU cores
 - 15TB+ RAM

- 1200 Simulation licenses
 - 200+ 16-core extracted sims
 - 300+ 4-core extracted sims

- Dedicated Calibre machines
 - Intel i9-7980XE 4.8GHz
 - World’s fastest 18-core machine
 - CPU de-capped, water-cooled
 - 4x16GB DDR4 RAM

- Carrier 15 Ton Cooling Units
 - >50kW Capacity

- 140 kW at full capacity!
Silicon Creations introduction

Scaling PLLs to 5nm – what changes?

7nm Simulation – Silicon correlations

Summary
Simulation = 7nm Silicon

Excellent correspondence between Mentor AFS derived phase noise and measured performance

AFS PSS + Pnoise (VCO, Charge pump)
7nm IoT PLL Power

- **Simulation**
 - Mean=3.02uA
 - Stddev=1.5%

- **Measurement**
 - Mean=3.15uA
 - Stddev=1.6%

Measured Current Distribution
Summary

- Silicon Creations provides PLLs, interfaces such as LVDS and SerDes to 25Gbps
- Market leader in PLLs – already in production in 7nm, well underway in 5nm
- Designing in FinFET brings many challenges including simulation complexity and runtime; need to pay close attention to parasitics, proximity and matching, and balance accuracy and design time
- 5nm is significantly more complex than 16nm/12nm, but no new techniques are needed; our PLL circuit topology has worked from 180nm to 5nm